#
# Copyright (c) 2006, 2007 Canonical
#
# Written by Gustavo Niemeyer <gustavo@niemeyer.net>
#
# This file is part of Storm Object Relational Mapper.
#
# Storm is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation; either version 2.1 of
# the License, or (at your option) any later version.
#
# Storm is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
from decimal import Decimal
from datetime import datetime, date, time, timedelta
from weakref import WeakKeyDictionary
from copy import copy
import re
from storm.compat import bstr, is_python2, long_int, ustr
from storm.exceptions import CompileError, NoTableError, ExprError
from storm.variables import (
Variable, RawStrVariable, UnicodeVariable, LazyValue,
DateTimeVariable, DateVariable, TimeVariable, TimeDeltaVariable,
BoolVariable, IntVariable, FloatVariable, DecimalVariable)
from storm import Undef, has_cextensions
# --------------------------------------------------------------------
# Basic compiler infrastructure
def _when(self, types):
"""Check Compile.when. Defined here to ease the work of cextensions."""
def decorator(method):
for type in types:
self._local_dispatch_table[type] = method
self._update_cache()
return method
return decorator
class Compile(object):
"""Compiler based on the concept of generic functions."""
def __init__(self, parent=None):
self._local_dispatch_table = {}
self._local_precedence = {}
self._local_reserved_words = {}
self._dispatch_table = {}
self._precedence = {}
self._reserved_words = {}
self._children = WeakKeyDictionary()
self._parents = []
if parent:
self._parents.extend(parent._parents)
self._parents.append(parent)
parent._children[self] = True
self._update_cache()
def _update_cache(self):
for parent in self._parents:
self._dispatch_table.update(parent._local_dispatch_table)
self._precedence.update(parent._local_precedence)
self._reserved_words.update(parent._local_reserved_words)
self._dispatch_table.update(self._local_dispatch_table)
self._precedence.update(self._local_precedence)
self._reserved_words.update(self._local_reserved_words)
for child in self._children:
child._update_cache()
def when(self, *types):
"""Decorator to include a type handler in this compiler.
Use this as:
>>> @compile.when(TypeA, TypeB)
>>> def compile_type_a_or_b(compile, expr, state):
>>> ...
>>> return "THE COMPILED SQL STATEMENT"
"""
return _when(self, types)
def add_reserved_words(self, words):
"""Include words to be considered reserved and thus escaped.
Reserved words are escaped during compilation when they're
seen in a SQLToken expression.
"""
self._local_reserved_words.update((word.lower(), True)
for word in words)
self._update_cache()
def remove_reserved_words(self, words):
self._local_reserved_words.update((word.lower(), None)
for word in words)
self._update_cache()
def is_reserved_word(self, word):
return self._reserved_words.get(word.lower()) is not None
def create_child(self):
"""Create a new instance of L{Compile} which inherits from this one.
This is most commonly used to customize a compiler for
database-specific compilation strategies.
"""
return self.__class__(self)
def get_precedence(self, type):
return self._precedence.get(type, MAX_PRECEDENCE)
def set_precedence(self, precedence, *types):
for type in types:
self._local_precedence[type] = precedence
self._update_cache()
def _compile_single(self, expr, state, outer_precedence):
# FASTPATH This method is part of the fast path. Be careful when
# changing it (try to profile any changes).
cls = expr.__class__
dispatch_table = self._dispatch_table
if cls in dispatch_table:
handler = dispatch_table[cls]
else:
for mro_cls in cls.__mro__:
# First iteration will always fail because we've already
# tested that the class itself isn't in the dispatch table.
if mro_cls in dispatch_table:
handler = dispatch_table[mro_cls]
break
else:
raise CompileError("Don't know how to compile type %r of %r"
% (expr.__class__, expr))
inner_precedence = state.precedence = \
self._precedence.get(cls, MAX_PRECEDENCE)
statement = handler(self, expr, state)
if inner_precedence < outer_precedence:
return "(%s)" % statement
return statement
def __call__(self, expr, state=None, join=u", ", raw=False, token=False):
"""Compile the given expression into a SQL statement.
@param expr: The expression to compile.
@param state: An instance of State, or None, in which case it's
created internally (and thus can't be accessed).
@param join: The string token to use to put between
subexpressions. Defaults to ", ".
@param raw: If true, any string or unicode expression or
subexpression will not be further compiled.
@param token: If true, any string or unicode expression will
be considered as a SQLToken, and quoted properly.
"""
# FASTPATH This method is part of the fast path. Be careful when
# changing it (try to profile any changes).
expr_type = type(expr)
if (expr_type is SQLRaw or
raw and (expr_type is bstr or expr_type is ustr)):
return expr
if token and (expr_type is bstr or expr_type is ustr):
expr = SQLToken(expr)
if state is None:
state = State()
outer_precedence = state.precedence
if expr_type is tuple or expr_type is list:
compiled = []
for subexpr in expr:
subexpr_type = type(subexpr)
if subexpr_type is SQLRaw or raw and (subexpr_type is bstr or
subexpr_type is ustr):
statement = subexpr
elif subexpr_type is tuple or subexpr_type is list:
state.precedence = outer_precedence
statement = self(subexpr, state, join, raw, token)
else:
if token and (subexpr_type is ustr or
subexpr_type is bstr):
subexpr = SQLToken(subexpr)
statement = self._compile_single(subexpr, state,
outer_precedence)
compiled.append(statement)
statement = join.join(compiled)
else:
statement = self._compile_single(expr, state, outer_precedence)
state.precedence = outer_precedence
return statement
if has_cextensions:
from storm.cextensions import Compile
[docs]class CompilePython(Compile):
[docs] def get_matcher(self, expr):
state = State()
source = self(expr, state)
namespace = {}
code = ("def closure(parameters, bool):\n"
" [%s] = parameters\n"
" def match(get_column):\n"
" return bool(%s)\n"
" return match" %
(",".join("_%d" % i for i in range(len(state.parameters))),
source))
exec(code, namespace)
return namespace['closure'](state.parameters, bool)
[docs]class State(object):
"""All the data necessary during compilation of an expression.
@ivar aliases: Dict of L{Column} instances to L{Alias} instances,
specifying how columns should be compiled as aliases in very
specific situations. This is typically used to work around
strange deficiencies in various databases.
@ivar auto_tables: The list of all implicitly-used tables. e.g.,
in store.find(Foo, Foo.attr==Bar.id), the tables of Bar and
Foo are implicitly used because columns in them are
referenced. This is used when building tables.
@ivar join_tables: If not None, when Join expressions are
compiled, tables seen will be added to this set. This acts as
a blacklist against auto_tables when compiling Joins, because
the generated statements should not refer to the table twice.
@ivar context: an instance of L{Context}, specifying the context
of the expression currently being compiled.
@ivar precedence: Current precedence, automatically set and restored
by the compiler. If an inner precedence is lower than an outer
precedence, parenthesis around the inner expression are
automatically emitted.
"""
def __init__(self):
self._stack = []
self.precedence = 0
self.parameters = []
self.auto_tables = []
self.join_tables = None
self.context = None
self.aliases = None
[docs] def push(self, attr, new_value=Undef):
"""Set an attribute in a way that can later be reverted with L{pop}.
"""
old_value = getattr(self, attr, None)
self._stack.append((attr, old_value))
if new_value is Undef:
new_value = copy(old_value)
setattr(self, attr, new_value)
return old_value
[docs] def pop(self):
"""Revert the topmost L{push}.
"""
setattr(self, *self._stack.pop(-1))
compile = Compile()
compile_python = CompilePython()
# --------------------------------------------------------------------
# Expression contexts
[docs]class Context(object):
"""
An object used to specify the nature of expected SQL expressions
being compiled in a given context.
"""
def __init__(self, name):
self._name = name
def __repr__(self):
return "%s(%r)" % (self.__class__.__name__, self._name)
TABLE = Context("TABLE")
EXPR = Context("EXPR")
COLUMN = Context("COLUMN")
COLUMN_PREFIX = Context("COLUMN_PREFIX")
COLUMN_NAME = Context("COLUMN_NAME")
SELECT = Context("SELECT")
# --------------------------------------------------------------------
# Builtin type support
[docs]@compile.when(bstr)
def compile_str(compile, expr, state):
state.parameters.append(RawStrVariable(expr))
return "?"
[docs]@compile.when(ustr)
def compile_unicode(compile, expr, state):
state.parameters.append(UnicodeVariable(expr))
return "?"
[docs]@compile.when(int, long_int)
def compile_int(compile, expr, state):
state.parameters.append(IntVariable(expr))
return "?"
[docs]@compile.when(float)
def compile_float(compile, expr, state):
state.parameters.append(FloatVariable(expr))
return "?"
[docs]@compile.when(Decimal)
def compile_decimal(compile, expr, state):
state.parameters.append(DecimalVariable(expr))
return "?"
[docs]@compile.when(bool)
def compile_bool(compile, expr, state):
state.parameters.append(BoolVariable(expr))
return "?"
[docs]@compile.when(datetime)
def compile_datetime(compile, expr, state):
state.parameters.append(DateTimeVariable(expr))
return "?"
[docs]@compile.when(date)
def compile_date(compile, expr, state):
state.parameters.append(DateVariable(expr))
return "?"
[docs]@compile.when(time)
def compile_time(compile, expr, state):
state.parameters.append(TimeVariable(expr))
return "?"
[docs]@compile.when(timedelta)
def compile_timedelta(compile, expr, state):
state.parameters.append(TimeDeltaVariable(expr))
return "?"
[docs]@compile.when(type(None))
def compile_none(compile, expr, state):
return "NULL"
[docs]@compile_python.when(bstr, ustr, int, long_int, float, type(None))
def compile_python_builtin(compile, expr, state):
return repr(expr)
[docs]@compile_python.when(bool, datetime, date, time, timedelta)
def compile_python_bool_and_dates(compile, expr, state):
index = len(state.parameters)
state.parameters.append(expr)
return "_%d" % index
[docs]@compile.when(Variable)
def compile_variable(compile, variable, state):
state.parameters.append(variable)
return "?"
[docs]@compile_python.when(Variable)
def compile_python_variable(compile, variable, state):
index = len(state.parameters)
state.parameters.append(variable.get())
return "_%d" % index
# --------------------------------------------------------------------
# Base classes for expressions
MAX_PRECEDENCE = 1000
[docs]class Expr(LazyValue):
__slots__ = ()
[docs]@compile_python.when(Expr)
def compile_python_unsupported(compile, expr, state):
raise CompileError("Can't compile python expressions with %r" % type(expr))
# A translation table that can escape a unicode string for use in a
# Like() expression that uses "!" as the escape character.
like_escape = {
ord(u"!"): u"!!",
ord(u"_"): u"!_",
ord(u"%"): u"!%"
}
[docs]class Comparable(object):
__slots__ = ()
def __eq__(self, other):
if other is not None and not isinstance(other, (Expr, Variable)):
other = getattr(self, "variable_factory", Variable)(value=other)
return Eq(self, other)
def __ne__(self, other):
if other is not None and not isinstance(other, (Expr, Variable)):
other = getattr(self, "variable_factory", Variable)(value=other)
return Ne(self, other)
def __gt__(self, other):
if not isinstance(other, (Expr, Variable)):
other = getattr(self, "variable_factory", Variable)(value=other)
return Gt(self, other)
def __ge__(self, other):
if not isinstance(other, (Expr, Variable)):
other = getattr(self, "variable_factory", Variable)(value=other)
return Ge(self, other)
def __lt__(self, other):
if not isinstance(other, (Expr, Variable)):
other = getattr(self, "variable_factory", Variable)(value=other)
return Lt(self, other)
def __le__(self, other):
if not isinstance(other, (Expr, Variable)):
other = getattr(self, "variable_factory", Variable)(value=other)
return Le(self, other)
def __rshift__(self, other):
if not isinstance(other, (Expr, Variable)):
other = getattr(self, "variable_factory", Variable)(value=other)
return RShift(self, other)
def __lshift__(self, other):
if not isinstance(other, (Expr, Variable)):
other = getattr(self, "variable_factory", Variable)(value=other)
return LShift(self, other)
def __and__(self, other):
if not isinstance(other, (Expr, Variable)):
other = getattr(self, "variable_factory", Variable)(value=other)
return And(self, other)
def __or__(self, other):
if not isinstance(other, (Expr, Variable)):
other = getattr(self, "variable_factory", Variable)(value=other)
return Or(self, other)
def __add__(self, other):
if not isinstance(other, (Expr, Variable)):
other = getattr(self, "variable_factory", Variable)(value=other)
return Add(self, other)
def __sub__(self, other):
if not isinstance(other, (Expr, Variable)):
other = getattr(self, "variable_factory", Variable)(value=other)
return Sub(self, other)
def __mul__(self, other):
if not isinstance(other, (Expr, Variable)):
other = getattr(self, "variable_factory", Variable)(value=other)
return Mul(self, other)
# TODO: This should technically be floordiv
def __truediv__(self, other):
if not isinstance(other, (Expr, Variable)):
other = getattr(self, "variable_factory", Variable)(value=other)
return Div(self, other)
# Python 2 compatibility
__div__ = __truediv__
def __mod__(self, other):
if not isinstance(other, (Expr, Variable)):
other = getattr(self, "variable_factory", Variable)(value=other)
return Mod(self, other)
def __neg__(self):
return Neg(self)
[docs] def is_in(self, others):
if not isinstance(others, Expr):
others = list(others)
if not others:
return False
variable_factory = getattr(self, "variable_factory", Variable)
for i, other in enumerate(others):
if not isinstance(other, (Expr, Variable)):
others[i] = variable_factory(value=other)
return In(self, others)
[docs] def like(self, other, escape=Undef, case_sensitive=None):
if not isinstance(other, (Expr, Variable)):
other = getattr(self, "variable_factory", Variable)(value=other)
return Like(self, other, escape, case_sensitive)
[docs] def lower(self):
return Lower(self)
[docs] def upper(self):
return Upper(self)
[docs] def startswith(self, prefix):
if not isinstance(prefix, ustr):
raise ExprError("Expected unicode argument, got %r" % type(prefix))
pattern = prefix.translate(like_escape) + u"%"
return Like(self, pattern, u"!")
[docs] def endswith(self, suffix):
if not isinstance(suffix, ustr):
raise ExprError("Expected unicode argument, got %r" % type(suffix))
pattern = u"%" + suffix.translate(like_escape)
return Like(self, pattern, u"!")
[docs] def contains_string(self, substring):
if not isinstance(substring, ustr):
raise ExprError("Expected unicode argument, got %r" % type(substring))
pattern = u"%" + substring.translate(like_escape) + u"%"
return Like(self, pattern, u"!")
[docs]class ComparableExpr(Expr, Comparable):
__slots__ = ()
[docs]class BinaryExpr(ComparableExpr):
__slots__ = ("expr1", "expr2")
def __init__(self, expr1, expr2):
self.expr1 = expr1
self.expr2 = expr2
[docs]class CompoundExpr(ComparableExpr):
__slots__ = ("exprs",)
def __init__(self, *exprs):
self.exprs = exprs
# --------------------------------------------------------------------
# Statement expressions
[docs]def has_tables(state, expr):
return (expr.tables is not Undef or
expr.default_tables is not Undef or
state.auto_tables)
[docs]def build_tables(compile, tables, default_tables, state):
"""Compile provided tables.
Tables will be built from either C{tables}, C{state.auto_tables}, or
C{default_tables}. If C{tables} is not C{Undef}, it will be used. If
C{tables} is C{Undef} and C{state.auto_tables} is available, that's used
instead. If neither C{tables} nor C{state.auto_tables} are available,
C{default_tables} is tried as a last resort. If none of them are available,
C{NoTableError} is raised.
"""
if tables is Undef:
if state.auto_tables:
tables = state.auto_tables
elif default_tables is not Undef:
tables = default_tables
else:
tables = None
# If we have no elements, it's an error.
if not tables:
raise NoTableError("Couldn't find any tables")
# If it's a single element, it's trivial.
if type(tables) not in (list, tuple) or len(tables) == 1:
return compile(tables, state, token=True)
# If we have no joins, it's trivial as well.
for elem in tables:
if isinstance(elem, JoinExpr):
break
else:
if tables is state.auto_tables:
tables = set(compile(table, state, token=True) for table in tables)
return ", ".join(sorted(tables))
else:
return compile(tables, state, token=True)
# Ok, now we have to be careful.
# If we're dealing with auto_tables, we have to take care of
# duplicated tables, join ordering, and so on.
if tables is state.auto_tables:
table_stmts = set()
join_stmts = set()
half_join_stmts = set()
# push a join_tables onto the state: compile calls below will
# populate this set so that we know what tables not to include.
state.push("join_tables", set())
for elem in tables:
statement = compile(elem, state, token=True)
if isinstance(elem, JoinExpr):
if elem.left is Undef:
half_join_stmts.add(statement)
else:
join_stmts.add(statement)
else:
table_stmts.add(statement)
# Remove tables that were seen in join statements.
table_stmts -= state.join_tables
state.pop()
result = ", ".join(sorted(table_stmts)+sorted(join_stmts))
if half_join_stmts:
result += " " + " ".join(sorted(half_join_stmts))
return "".join(result)
# Otherwise, it's just a matter of putting it together.
result = []
for elem in tables:
if result:
if isinstance(elem, JoinExpr) and elem.left is Undef: #half-join
result.append(" ")
else:
result.append(", ")
result.append(compile(elem, state, token=True))
return "".join(result)
[docs]class Select(Expr):
__slots__ = ("columns", "where", "tables", "default_tables", "order_by",
"group_by", "limit", "offset", "distinct", "having")
def __init__(self, columns, where=Undef,
tables=Undef, default_tables=Undef,
order_by=Undef, group_by=Undef,
limit=Undef, offset=Undef, distinct=False, having=Undef):
self.columns = columns
self.where = where
self.tables = tables
self.default_tables = default_tables
self.order_by = order_by
self.group_by = group_by
self.limit = limit
self.offset = offset
self.distinct = distinct
self.having = having
[docs]@compile.when(Select)
def compile_select(compile, select, state):
tokens = ["SELECT "]
state.push("auto_tables", [])
state.push("context", COLUMN)
if select.distinct:
tokens.append("DISTINCT ")
if isinstance(select.distinct, (tuple, list)):
tokens.append(
"ON (%s) " % compile(select.distinct, state, raw=True))
tokens.append(compile(select.columns, state))
tables_pos = len(tokens)
parameters_pos = len(state.parameters)
state.context = EXPR
if select.where is not Undef:
tokens.append(" WHERE ")
tokens.append(compile(select.where, state, raw=True))
if select.group_by is not Undef:
tokens.append(" GROUP BY ")
tokens.append(compile(select.group_by, state, raw=True))
if select.having is not Undef:
tokens.append(" HAVING ")
tokens.append(compile(select.having, state, raw=True))
if select.order_by is not Undef:
tokens.append(" ORDER BY ")
tokens.append(compile(select.order_by, state, raw=True))
if select.limit is not Undef:
tokens.append(" LIMIT %d" % select.limit)
if select.offset is not Undef:
tokens.append(" OFFSET %d" % select.offset)
if has_tables(state, select):
state.context = TABLE
state.push("parameters", [])
tokens.insert(tables_pos, " FROM ")
tokens.insert(tables_pos+1, build_tables(compile, select.tables,
select.default_tables, state))
parameters = state.parameters
state.pop()
state.parameters[parameters_pos:parameters_pos] = parameters
state.pop()
state.pop()
return "".join(tokens)
[docs]class Insert(Expr):
"""Expression representing an insert statement.
@ivar map: Dictionary mapping columns to values, or a sequence of columns
for a bulk insert.
@ivar table: Table where the row should be inserted.
@ivar default_table: Table to use if no table is explicitly provided, and
no tables may be inferred from provided columns.
@ivar primary_columns: Tuple of columns forming the primary key of the
table where the row will be inserted. This is a hint used by backends
to process the insertion of rows.
@ivar primary_variables: Tuple of variables with values for the primary
key of the table where the row will be inserted. This is a hint used
by backends to process the insertion of rows.
@ivar values: Expression or sequence of tuples of values for bulk
insertion.
"""
__slots__ = ("map", "table", "default_table", "primary_columns",
"primary_variables", "values")
def __init__(self, map, table=Undef, default_table=Undef,
primary_columns=Undef, primary_variables=Undef,
values=Undef):
self.map = map
self.table = table
self.default_table = default_table
self.primary_columns = primary_columns
self.primary_variables = primary_variables
self.values = values
[docs]@compile.when(Insert)
def compile_insert(compile, insert, state):
state.push("context", COLUMN_NAME)
columns = compile(tuple(insert.map), state, token=True)
state.context = TABLE
table = build_tables(compile, insert.table, insert.default_table, state)
state.context = EXPR
values = insert.values
if values is Undef:
values = [tuple(insert.map.values())]
if isinstance(values, Expr):
compiled_values = compile(values, state)
else:
compiled_values = (
"VALUES (%s)" %
"), (".join(compile(value, state) for value in values))
state.pop()
return "".join(
["INSERT INTO ", table, " (", columns, ") ", compiled_values])
[docs]class Update(Expr):
__slots__ = ("map", "where", "table", "default_table", "primary_columns")
def __init__(self, map, where=Undef, table=Undef, default_table=Undef,
primary_columns=Undef):
self.map = map
self.where = where
self.table = table
self.default_table = default_table
self.primary_columns = primary_columns
[docs]@compile.when(Update)
def compile_update(compile, update, state):
map = update.map
state.push("context", COLUMN_NAME)
sets = ["%s=%s" % (compile(col, state, token=True),
compile(map[col], state))
for col in map]
state.context = TABLE
tokens = ["UPDATE ", build_tables(compile, update.table,
update.default_table, state),
" SET ", ", ".join(sets)]
if update.where is not Undef:
state.context = EXPR
tokens.append(" WHERE ")
tokens.append(compile(update.where, state, raw=True))
state.pop()
return "".join(tokens)
[docs]class Delete(Expr):
__slots__ = ("where", "table", "default_table")
def __init__(self, where=Undef, table=Undef, default_table=Undef):
self.where = where
self.table = table
self.default_table = default_table
[docs]@compile.when(Delete)
def compile_delete(compile, delete, state):
tokens = ["DELETE FROM ", None]
state.push("context", EXPR)
if delete.where is not Undef:
tokens.append(" WHERE ")
tokens.append(compile(delete.where, state, raw=True))
# Compile later for auto_tables support.
state.context = TABLE
tokens[1] = build_tables(compile, delete.table,
delete.default_table, state)
state.pop()
return "".join(tokens)
# --------------------------------------------------------------------
# Columns
[docs]class Column(ComparableExpr):
"""Representation of a column in some table.
@ivar name: Column name.
@ivar table: Column table (maybe another expression).
@ivar primary: Integer representing the primary key position of
this column, or 0 if it's not a primary key. May be provided as
a bool.
@ivar variable_factory: Factory producing C{Variable} instances typed
according to this column.
"""
__slots__ = ("name", "table", "primary", "variable_factory",
"compile_cache", "compile_id")
def __init__(self, name=Undef, table=Undef, primary=False,
variable_factory=None):
self.name = name
self.table = table
self.primary = int(primary)
self.variable_factory = variable_factory or Variable
self.compile_cache = None
self.compile_id = None
if not is_python2:
def __hash__(self):
return id(self)
[docs]@compile.when(Column)
def compile_column(compile, column, state):
if column.table is not Undef:
state.auto_tables.append(column.table)
if column.table is Undef or state.context is COLUMN_NAME:
if state.aliases is not None:
# See compile_set_expr().
alias = state.aliases.get(column)
if alias is not None:
return compile(alias.name, state, token=True)
if column.compile_id != id(compile):
column.compile_cache = compile(column.name, state, token=True)
column.compile_id = id(compile)
return column.compile_cache
state.push("context", COLUMN_PREFIX)
table = compile(column.table, state, token=True)
state.pop()
if column.compile_id != id(compile):
column.compile_cache = compile(column.name, state, token=True)
column.compile_id = id(compile)
return "%s.%s" % (table, column.compile_cache)
[docs]@compile_python.when(Column)
def compile_python_column(compile, column, state):
index = len(state.parameters)
state.parameters.append(column)
return "get_column(_%d)" % index
# --------------------------------------------------------------------
# Alias expressions
[docs]class Alias(ComparableExpr):
"""A representation of "AS" alias clauses. e.g., SELECT foo AS bar."""
__slots__ = ("expr", "name")
auto_counter = 0
def __init__(self, expr, name=Undef):
"""Create alias of C{expr} AS C{name}.
If C{name} is not given, then a name will automatically be
generated.
"""
self.expr = expr
if name is Undef:
Alias.auto_counter += 1
name = "_%x" % Alias.auto_counter
self.name = name
if not is_python2:
def __hash__(self):
return id(self)
[docs]@compile.when(Alias)
def compile_alias(compile, alias, state):
name = compile(alias.name, state, token=True)
if state.context is COLUMN or state.context is TABLE:
return "%s AS %s" % (compile(alias.expr, state), name)
return name
# --------------------------------------------------------------------
# From expressions
[docs]class FromExpr(Expr):
__slots__ = ()
[docs]class Table(FromExpr):
__slots__ = ("name", "compile_cache", "compile_id")
def __init__(self, name):
self.name = name
self.compile_cache = None
self.compile_id = None
[docs]@compile.when(Table)
def compile_table(compile, table, state):
if table.compile_id != id(compile):
table.compile_cache = compile(table.name, state, token=True)
table.compile_id = id(compile)
return table.compile_cache
[docs]class JoinExpr(FromExpr):
__slots__ = ("left", "right", "on")
oper = "(unknown)"
def __init__(self, arg1, arg2=Undef, on=Undef):
# http://www.postgresql.org/docs/8.1/interactive/explicit-joins.html
if arg2 is Undef:
self.left = Undef
self.right = arg1
self.on = on
elif not isinstance(arg2, Expr) or isinstance(arg2, (FromExpr, Alias)):
self.left = arg1
self.right = arg2
self.on = on
else:
self.left = Undef
self.right = arg1
self.on = arg2
if on is not Undef:
raise ExprError("Improper join arguments: (%r, %r, %r)" %
(arg1, arg2, on))
[docs]@compile.when(JoinExpr)
def compile_join(compile, join, state):
result = []
if join.left is not Undef:
statement = compile(join.left, state, token=True)
result.append(statement)
if state.join_tables is not None:
state.join_tables.add(statement)
result.append(join.oper)
# Joins are left associative, so ensure joins in the right hand
# argument get parentheses.
state.precedence += 0.5
statement = compile(join.right, state, token=True)
result.append(statement)
if state.join_tables is not None:
state.join_tables.add(statement)
if join.on is not Undef:
state.push("context", EXPR)
result.append("ON")
result.append(compile(join.on, state, raw=True))
state.pop()
return " ".join(result)
[docs]class Join(JoinExpr):
__slots__ = ()
oper = "JOIN"
[docs]class LeftJoin(JoinExpr):
__slots__ = ()
oper = "LEFT JOIN"
[docs]class RightJoin(JoinExpr):
__slots__ = ()
oper = "RIGHT JOIN"
[docs]class NaturalJoin(JoinExpr):
__slots__ = ()
oper = "NATURAL JOIN"
[docs]class NaturalLeftJoin(JoinExpr):
__slots__ = ()
oper = "NATURAL LEFT JOIN"
[docs]class NaturalRightJoin(JoinExpr):
__slots__ = ()
oper = "NATURAL RIGHT JOIN"
# --------------------------------------------------------------------
# Distinct expressions
[docs]class Distinct(Expr):
"""Add the 'DISTINCT' prefix to an expression."""
__slots__ = ("expr")
def __init__(self, expr):
self.expr = expr
[docs]@compile.when(Distinct)
def compile_distinct(compile, distinct, state):
return "DISTINCT %s" % compile(distinct.expr, state)
# --------------------------------------------------------------------
# Operators
[docs]class BinaryOper(BinaryExpr):
__slots__ = ()
oper = " (unknown) "
[docs]@compile.when(BinaryOper)
@compile_python.when(BinaryOper)
def compile_binary_oper(compile, expr, state):
return "%s%s%s" % (compile(expr.expr1, state), expr.oper,
compile(expr.expr2, state))
[docs]class NonAssocBinaryOper(BinaryOper):
__slots__ = ()
oper = " (unknown) "
[docs]@compile.when(NonAssocBinaryOper)
@compile_python.when(NonAssocBinaryOper)
def compile_non_assoc_binary_oper(compile, expr, state):
expr1 = compile(expr.expr1, state)
state.precedence += 0.5 # Enforce parentheses.
expr2 = compile(expr.expr2, state)
return "%s%s%s" % (expr1, expr.oper, expr2)
[docs]class CompoundOper(CompoundExpr):
__slots__ = ()
oper = " (unknown) "
@compile.when(CompoundOper)
def compile_compound_oper(compile, expr, state):
return compile(expr.exprs, state, join=expr.oper)
@compile_python.when(CompoundOper)
def compile_compound_oper(compile, expr, state):
return compile(expr.exprs, state, join=expr.oper.lower())
[docs]class Eq(BinaryOper):
__slots__ = ()
oper = " = "
@compile.when(Eq)
def compile_eq(compile, eq, state):
if eq.expr2 is None:
return "%s IS NULL" % compile(eq.expr1, state)
return "%s = %s" % (compile(eq.expr1, state), compile(eq.expr2, state))
[docs]@compile_python.when(Eq)
def compile_eq(compile, eq, state):
return "%s == %s" % (compile(eq.expr1, state), compile(eq.expr2, state))
[docs]class Ne(BinaryOper):
__slots__ = ()
oper = " != "
[docs]@compile.when(Ne)
def compile_ne(compile, ne, state):
if ne.expr2 is None:
return "%s IS NOT NULL" % compile(ne.expr1, state)
return "%s != %s" % (compile(ne.expr1, state), compile(ne.expr2, state))
[docs]class Gt(BinaryOper):
__slots__ = ()
oper = " > "
[docs]class Ge(BinaryOper):
__slots__ = ()
oper = " >= "
[docs]class Lt(BinaryOper):
__slots__ = ()
oper = " < "
[docs]class Le(BinaryOper):
__slots__ = ()
oper = " <= "
[docs]class RShift(BinaryOper):
__slots__ = ()
oper = ">>"
[docs]class LShift(BinaryOper):
__slots__ = ()
oper = "<<"
[docs]class Like(BinaryOper):
__slots__ = ("escape", "case_sensitive")
oper = " LIKE "
def __init__(self, expr1, expr2, escape=Undef, case_sensitive=None):
self.expr1 = expr1
self.expr2 = expr2
self.escape = escape
self.case_sensitive = case_sensitive
[docs]@compile.when(Like)
def compile_like(compile, like, state, oper=None):
statement = "%s%s%s" % (compile(like.expr1, state), oper or like.oper,
compile(like.expr2, state))
if like.escape is not Undef:
statement = "%s ESCAPE %s" % (statement, compile(like.escape, state))
return statement
# It's easy to support it. Later.
compile_python.when(Like)(compile_python_unsupported)
[docs]class In(BinaryOper):
__slots__ = ()
oper = " IN "
@compile.when(In)
def compile_in(compile, expr, state):
expr1 = compile(expr.expr1, state)
state.precedence = 0 # We're forcing parenthesis here.
return "%s IN (%s)" % (expr1, compile(expr.expr2, state))
[docs]@compile_python.when(In)
def compile_in(compile, expr, state):
expr1 = compile(expr.expr1, state)
state.precedence = 0 # We're forcing parenthesis here.
return "%s in (%s,)" % (expr1, compile(expr.expr2, state))
[docs]class Add(CompoundOper):
__slots__ = ()
oper = "+"
[docs]class Sub(NonAssocBinaryOper):
__slots__ = ()
oper = "-"
[docs]class Mul(CompoundOper):
__slots__ = ()
oper = "*"
[docs]class Div(NonAssocBinaryOper):
__slots__ = ()
oper = "/"
[docs]class Mod(NonAssocBinaryOper):
__slots__ = ()
oper = "%"
[docs]class And(CompoundOper):
__slots__ = ()
oper = " AND "
[docs]class Or(CompoundOper):
__slots__ = ()
oper = " OR "
[docs]@compile.when(And, Or)
def compile_compound_oper(compile, expr, state):
return compile(expr.exprs, state, join=expr.oper, raw=True)
# --------------------------------------------------------------------
# Set expressions.
[docs]class SetExpr(Expr):
__slots__ = ("exprs", "all", "order_by", "limit", "offset")
oper = " (unknown) "
def __init__(self, *exprs, **kwargs):
self.exprs = exprs
self.all = kwargs.get("all", False)
self.order_by = kwargs.get("order_by", Undef)
self.limit = kwargs.get("limit", Undef)
self.offset = kwargs.get("offset", Undef)
# If the first expression is of a compatible type, directly
# include its sub expressions.
if len(self.exprs) > 0:
first = self.exprs[0]
if (isinstance(first, self.__class__) and
first.all == self.all and
first.limit is Undef and
first.offset is Undef):
self.exprs = first.exprs + self.exprs[1:]
[docs]@compile.when(SetExpr)
def compile_set_expr(compile, expr, state):
if expr.order_by is not Undef:
# When ORDER BY is present, databases usually have trouble using
# fully qualified column names. Because of that, we transform
# pure column names into aliases, and use them in the ORDER BY.
aliases = {}
for subexpr in expr.exprs:
if isinstance(subexpr, Select):
columns = subexpr.columns
if not isinstance(columns, (tuple, list)):
columns = [columns]
else:
columns = list(columns)
for i, column in enumerate(columns):
if column not in aliases:
if isinstance(column, Column):
aliases[column] = columns[i] = Alias(column)
elif isinstance(column, Alias):
aliases[column.expr] = column
subexpr.columns = columns
state.push("context", SELECT)
# In the statement:
# SELECT foo UNION SELECT bar LIMIT 1
# The LIMIT 1 applies to the union results, not the SELECT bar
# This ensures that parentheses will be placed around the
# sub-selects in the expression.
state.precedence += 0.5
oper = expr.oper
if expr.all:
oper += "ALL "
statement = compile(expr.exprs, state, join=oper)
state.precedence -= 0.5
if expr.order_by is not Undef:
state.context = COLUMN_NAME
if state.aliases is None:
state.push("aliases", aliases)
else:
# Previously defined aliases have precedence.
aliases.update(state.aliases)
state.aliases = aliases
aliases = None
statement += " ORDER BY " + compile(expr.order_by, state)
if aliases is not None:
state.pop()
if expr.limit is not Undef:
statement += " LIMIT %d" % expr.limit
if expr.offset is not Undef:
statement += " OFFSET %d" % expr.offset
state.pop()
return statement
[docs]class Union(SetExpr):
__slots__ = ()
oper = " UNION "
[docs]class Except(SetExpr):
__slots__ = ()
oper = " EXCEPT "
[docs]class Intersect(SetExpr):
__slots__ = ()
oper = " INTERSECT "
# --------------------------------------------------------------------
# Functions
[docs]class FuncExpr(ComparableExpr):
__slots__ = ()
name = "(unknown)"
[docs]class Count(FuncExpr):
__slots__ = ("column", "distinct")
name = "COUNT"
def __init__(self, column=Undef, distinct=False):
if distinct and column is Undef:
raise ValueError("Must specify column when using distinct count")
self.column = column
self.distinct = distinct
[docs]@compile.when(Count)
def compile_count(compile, count, state):
if count.column is not Undef:
state.push("context", EXPR)
column = compile(count.column, state)
state.pop()
if count.distinct:
return "COUNT(DISTINCT %s)" % column
return "COUNT(%s)" % column
return "COUNT(*)"
[docs]class Func(FuncExpr):
__slots__ = ("name", "args")
def __init__(self, name, *args):
self.name = name
self.args = args
[docs]class NamedFunc(FuncExpr):
__slots__ = ("args",)
def __init__(self, *args):
self.args = args
[docs]@compile.when(Func, NamedFunc)
def compile_func(compile, func, state):
state.push("context", EXPR)
args = compile(func.args, state)
state.pop()
return "%s(%s)" % (func.name, args)
[docs]class Max(NamedFunc):
__slots__ = ()
name = "MAX"
[docs]class Min(NamedFunc):
__slots__ = ()
name = "MIN"
[docs]class Avg(NamedFunc):
__slots__ = ()
name = "AVG"
[docs]class Sum(NamedFunc):
__slots__ = ()
name = "SUM"
[docs]class Lower(NamedFunc):
__slots__ = ()
name = "LOWER"
[docs]class Upper(NamedFunc):
__slots__ = ()
name = "UPPER"
[docs]class Coalesce(NamedFunc):
__slots__ = ()
name = "COALESCE"
[docs]class Row(NamedFunc):
__slots__ = ()
name = "ROW"
[docs]class Cast(FuncExpr):
"""A representation of C{CAST} clauses. e.g., C{CAST(bar AS TEXT)}."""
__slots__ = ("column", "type")
name = "CAST"
def __init__(self, column, type):
"""Create a cast of C{column} as C{type}."""
self.column = column
self.type = type
[docs]@compile.when(Cast)
def compile_cast(compile, cast, state):
"""Compile L{Cast} expressions."""
state.push("context", EXPR)
column = compile(cast.column, state)
state.pop()
return "CAST(%s AS %s)" % (column, cast.type)
# --------------------------------------------------------------------
# Prefix and suffix expressions
[docs]class PrefixExpr(Expr):
__slots__ = ("expr",)
prefix = "(unknown)"
def __init__(self, expr):
self.expr = expr
[docs]@compile.when(PrefixExpr)
def compile_prefix_expr(compile, expr, state):
return "%s %s" % (expr.prefix, compile(expr.expr, state))
[docs]class SuffixExpr(Expr):
__slots__ = ("expr",)
suffix = "(unknown)"
def __init__(self, expr):
self.expr = expr
[docs]@compile.when(SuffixExpr)
def compile_suffix_expr(compile, expr, state):
return "%s %s" % (compile(expr.expr, state, raw=True), expr.suffix)
[docs]class Not(PrefixExpr):
__slots__ = ()
prefix = "NOT"
[docs]class Exists(PrefixExpr):
__slots__ = ()
prefix = "EXISTS"
[docs]class Neg(PrefixExpr):
__slots__ = ()
prefix = "-"
[docs]@compile_python.when(Neg)
def compile_neg_expr(compile, expr, state):
return "-%s" % compile(expr.expr, state, raw=True)
[docs]class Asc(SuffixExpr):
__slots__ = ()
suffix = "ASC"
[docs]class Desc(SuffixExpr):
__slots__ = ()
suffix = "DESC"
# --------------------------------------------------------------------
# Plain SQL expressions.
[docs]class SQLRaw(str):
"""Subtype to mark a string as something that shouldn't be compiled.
This is handled internally by the compiler.
"""
__slots__ = ()
[docs]class SQLToken(str):
"""Marker for strings that should be considered as a single SQL token.
These strings will be quoted, when needed.
"""
__slots__ = ()
is_safe_token = re.compile("^[a-zA-Z][a-zA-Z0-9_]*$").match
[docs]@compile.when(SQLToken)
def compile_sql_token(compile, expr, state):
if is_safe_token(expr) and not compile.is_reserved_word(expr):
return expr
return '"%s"' % expr.replace('"', '""')
[docs]@compile_python.when(SQLToken)
def compile_python_sql_token(compile, expr, state):
return expr
[docs]class SQL(ComparableExpr):
__slots__ = ("expr", "params", "tables")
def __init__(self, expr, params=Undef, tables=Undef):
self.expr = expr
self.params = params
self.tables = tables
[docs]@compile.when(SQL)
def compile_sql(compile, expr, state):
if expr.params is not Undef:
if type(expr.params) not in (tuple, list):
raise CompileError("Parameters should be a list or a tuple, "
"not %r" % type(expr.params))
for param in expr.params:
state.parameters.append(param)
if expr.tables is not Undef:
state.auto_tables.append(expr.tables)
return expr.expr
# --------------------------------------------------------------------
# Sequences.
[docs]class Sequence(Expr):
"""Expression representing auto-incrementing support from the database.
This should be translated into the *next* value of the named
auto-incrementing sequence. There's no standard way to compile a
sequence, since it's very database-dependent.
This may be used as follows::
class Class(object):
(...)
id = Int(default=Sequence("my_sequence_name"))
"""
__slots__ = ("name",)
def __init__(self, name):
self.name = name
# --------------------------------------------------------------------
# Utility functions.
[docs]def compare_columns(columns, values):
if not columns:
return Undef
equals = []
if len(columns) == 1:
value = values[0]
if not isinstance(value, (Expr, Variable)) and value is not None:
value = columns[0].variable_factory(value=value)
return Eq(columns[0], value)
else:
for column, value in zip(columns, values):
if not isinstance(value, (Expr, Variable)) and value is not None:
value = column.variable_factory(value=value)
equals.append(Eq(column, value))
return And(*equals)
# --------------------------------------------------------------------
# Auto table
[docs]class AutoTables(Expr):
"""This class will inject one or more entries in state.auto_tables.
If the constructor is passed replace=True, it will also discard any
auto_table entries injected by compiling the given expression.
"""
__slots__ = ("expr", "tables", "replace")
def __init__(self, expr, tables, replace=False):
assert type(tables) in (list, tuple)
self.expr = expr
self.tables = tables
self.replace = replace
[docs]@compile.when(AutoTables)
def compile_auto_tables(compile, expr, state):
if expr.replace:
state.push("auto_tables", [])
statement = compile(expr.expr, state)
if expr.replace:
state.pop()
state.auto_tables.extend(expr.tables)
return statement
# --------------------------------------------------------------------
# Set operator precedences.
compile.set_precedence(10, Select, Insert, Update, Delete)
compile.set_precedence(10, Join, LeftJoin, RightJoin)
compile.set_precedence(10, NaturalJoin, NaturalLeftJoin, NaturalRightJoin)
compile.set_precedence(10, Union, Except, Intersect)
compile.set_precedence(20, SQL)
compile.set_precedence(30, Or)
compile.set_precedence(40, And)
compile.set_precedence(50, Eq, Ne, Gt, Ge, Lt, Le, Like, In)
compile.set_precedence(60, LShift, RShift)
compile.set_precedence(70, Add, Sub)
compile.set_precedence(80, Mul, Div, Mod)
compile_python.set_precedence(10, Or)
compile_python.set_precedence(20, And)
compile_python.set_precedence(30, Eq, Ne, Gt, Ge, Lt, Le, Like, In)
compile_python.set_precedence(40, LShift, RShift)
compile_python.set_precedence(50, Add, Sub)
compile_python.set_precedence(60, Mul, Div, Mod)
# --------------------------------------------------------------------
# Reserved words, from SQL1992
compile.add_reserved_words(
"""
absolute action add all allocate alter and any are as asc assertion at
authorization avg begin between bit bit_length both by cascade cascaded
case cast catalog char character char_ length character_length check close
coalesce collate collation column commit connect connection constraint
constraints continue convert corresponding count create cross current
current_date current_time current_timestamp current_ user cursor date day
deallocate dec decimal declare default deferrable deferred delete desc
describe descriptor diagnostics disconnect distinct domain double drop
else end end-exec escape except exception exec execute exists external
extract false fetch first float for foreign found from full get global go
goto grant group having hour identity immediate in indicator initially
inner input insensitive insert int integer intersect interval into is
isolation join key language last leading left level like local lower
match max min minute module month names national natural nchar next no
not null nullif numeric octet_length of on only open option or order
outer output overlaps pad partial position precision prepare preserve
primary prior privileges procedure public read real references relative
restrict revoke right rollback rows schema scroll second section select
session session_ user set size smallint some space sql sqlcode sqlerror
sqlstate substring sum system_user table temporary then time timestamp
timezone_ hour timezone_minute to trailing transaction translate
translation trim true union unique unknown update upper usage user using
value values varchar varying view when whenever where with work write
year zone
""".split())